Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Nat Commun ; 13(1): 575, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102164

RESUMO

DNA methylation is an epigenetic mechanism that plays important roles in gene regulation and transposon silencing. Active DNA demethylation has evolved to counterbalance DNA methylation at many endogenous loci. Here, we report that active DNA demethylation also targets viral DNAs, tomato yellow leaf curl China virus (TYLCCNV) and its satellite tomato yellow leaf curl China betasatellite (TYLCCNB), to promote their virulence. We demonstrate that the ßC1 protein, encoded by TYLCCNB, interacts with a ROS1-like DNA glycosylase in Nicotiana benthamiana and with the DEMETER (DME) DNA glycosylase in Arabidopsis thaliana. The interaction between ßC1 and DME facilitates the DNA glycosylase activity to decrease viral DNA methylation and promote viral virulence. These findings reveal that active DNA demethylation can be regulated by a viral protein to subvert DNA methylation-mediated defense.


Assuntos
Begomovirus/patogenicidade , DNA Glicosilases/metabolismo , Metilação de DNA/genética , Interações Hospedeiro-Patógeno/genética , Arabidopsis/virologia , DNA Viral/metabolismo , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Ligação Proteica , Vírus Satélites/patogenicidade , Nicotiana/virologia , Proteínas Virais/metabolismo , Virulência
2.
Sci Rep ; 12(1): 695, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027584

RESUMO

In recent decades, a legion of monopartite begomoviruses transmitted by the whitefly Bemisia tabaci has emerged as serious threats to vegetable crops in Africa. Recent studies in Burkina Faso (West Africa) reported the predominance of pepper yellow vein Mali virus (PepYVMLV) and its frequent association with a previously unknown DNA-B component. To understand the role of this DNA-B component in the emergence of PepYVMLV, we assessed biological traits related to virulence, virus accumulation, location in the tissue and transmission. We demonstrate that the DNA-B component is not required for systemic movement and symptom development of PepYVMLV (non-strict association), but that its association produces more severe symptoms including growth arrest and plant death. The increased virulence is associated with a higher viral DNA accumulation in plant tissues, an increase in the number of contaminated nuclei of the phloem parenchyma and in the transmission rate by B. tabaci. Our results suggest that the association of a DNA-B component with the otherwise monopartite PepYVMLV is a key factor of its emergence.


Assuntos
Begomovirus/genética , Begomovirus/patogenicidade , DNA Viral/genética , DNA Viral/metabolismo , Doenças das Plantas/virologia , Plantas/virologia , Virulência/genética , Animais , Hemípteros/virologia , Plantas/metabolismo
3.
Mol Biotechnol ; 64(3): 221-244, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34628588

RESUMO

The annual herb, Ageratum conyzoides L. (Asteraceae), is distributed throughout the world. Although invasive, it can be very useful as a source of essential oils, pharmaceuticals, biopesticides, and bioenergy. However, very limited information exists on the molecular basis of its different utility as previous investigations were mainly focused on phytochemical/biological activity profiling. Here we have explored various properties of A. conyzoides that may offer environmental, ecological, agricultural, and health benefits. As this aromatic plant harbors many important secondary metabolites that may have various implications, biotechnological interventions such as genomics, metabolomics and tissue-culture can be indispensable tools for their mass-production. Further, A. conyzoides acts as a natural reservoir of begomoviruses affecting a wide range of plant species. As the mechanisms of disease spreading and crop infection are not fully clear, whole-genome sequencing and various advanced molecular technologies including RNAi, CRISPER/Cas9, multi-omics approaches, etc., may aid to decipher the molecular mechanism of such disease development and thus, can be useful in crop protection. Overall, improved knowledge of A. conyzoides is not only essential for developing sustainable weed control strategy but can also offer potential ways for biomedicinal, environment, safe and clean agriculture applications.


Assuntos
Ageratum/química , Begomovirus/patogenicidade , Extratos Vegetais/química , Ageratum/virologia , Agricultura , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Metabolismo Secundário
4.
BMC Plant Biol ; 21(1): 545, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34800968

RESUMO

BACKGROUND: Virus-induced gene silencing (VIGS) is one of the most convenient and powerful methods of reverse genetics. In vitro-inoculation of plant virus is an important method for studying the interactions between viruses and plants. Agrobacterium-based infiltration has been widely adopted as a tool for VIGS and in vitro-inoculation of plant virus. Most agrobacterium-based infiltration methods applied to VIGS and virus inoculation have the characteristics of low transformation efficiencies, long plant growth time, large amounts of plant tissue, large test spaces, and complex preparation procedures. Therefore, a rapid, simple, economical, and highly efficient VIGS and virus inoculation method is in need. Previous studies have shown that the selection of suitable plant tissues and inoculation sites is the key to successful infection. RESULTS: In this study, Tobacco rattle virus (TRV) mediated VIGS and Tomato yellow leaf curl virus (TYLCV) for virus inoculation were developed in tomato plants based on the agrobacterium tumefaciens-based infiltration by injection of the no-apical-bud stem section (INABS). The no-apical-bud stem section had a "Y- type" asymmetric structure and contained an axillary bud that was about 1-3 cm in length. This protocol provides high transformation (56.7%) and inoculation efficiency (68.3%), which generates VIGS transformants or diseased plants in a very short period (8 dpi). Moreover, it greatly reduces the required experimental space. This method will facilitate functional genomic studies and large-scale disease resistance screening. CONCLUSIONS: Overall, a rapid, simple, and highly efficient method for VIGS and virus inoculation by INABS was developed in tomato. It was reasonable to believe that it can be used as a reference for the other virus inoculation methods and for the application of VIGS to other crops (such as sweet potato, potato, cassava and tobacco) that develop axillary buds and can survive from cuttings.


Assuntos
Agrobacterium/patogenicidade , Begomovirus/patogenicidade , Inativação Gênica , Melhoramento Vegetal/métodos , Vírus de Plantas/patogenicidade , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/virologia , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/virologia , Doenças das Plantas/virologia
5.
Int J Mol Sci ; 22(22)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34830426

RESUMO

In recent decades, Pakistan has suffered a decline in cotton production due to several factors, including insect pests, cotton leaf curl disease (CLCuD), and multiple abiotic stresses. CLCuD is a highly damaging plant disease that seriously limits cotton production in Pakistan. Recently, genome editing through CRISPR/Cas9 has revolutionized plant biology, especially to develop immunity in plants against viral diseases. Here we demonstrate multiplex CRISPR/Cas-mediated genome editing against CLCuD using transient transformation in N. benthamiana plants and cotton seedlings. The genomic sequences of cotton leaf curl viruses (CLCuVs) were obtained from NCBI and the guide RNA (gRNA) were designed to target three regions in the viral genome using CRISPR MultiTargeter. The gRNAs were cloned in pHSE401/pKSE401 containing Cas9 and confirmed through colony PCR, restriction analysis, and sequencing. Confirmed constructs were moved into Agrobacterium and subsequently used for transformation. Agroinfilteration in N. benthamiana revealed delayed symptoms (3-5 days) with improved resistance against CLCuD. In addition, viral titer was also low (20-40%) in infected plants co-infiltrated with Cas9-gRNA, compared to control plants (infected with virus only). Similar results were obtained in cotton seedlings. The results of transient expression in N. benthamiana and cotton seedlings demonstrate the potential of multiplex CRISPR/Cas to develop resistance against CLCuD. Five transgenic plants developed from three experiments showed resistance (60-70%) to CLCuV, out of which two were selected best during evaluation and screening. The technology will help breeding CLCuD-resistant cotton varieties for sustainable cotton production.


Assuntos
Begomovirus/genética , Sistemas CRISPR-Cas/genética , Resistência à Doença/genética , Gossypium/genética , Agrobacterium/genética , Begomovirus/patogenicidade , Gossypium/crescimento & desenvolvimento , Gossypium/virologia , Doenças das Plantas/genética , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/virologia , Solanaceae/genética , Solanaceae/crescimento & desenvolvimento , Solanaceae/virologia
6.
Viruses ; 13(9)2021 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-34578388

RESUMO

Many plant viruses depend on insect vectors for their transmission and dissemination. The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is one of the most important virus vectors, transmitting more than four hundred virus species, the majority belonging to begomoviruses (Geminiviridae), with their ssDNA genomes. Begomoviruses are transmitted by B. tabaci in a persistent, circulative manner, during which the virus breaches barriers in the digestive, hemolymph, and salivary systems, and interacts with insect proteins along the transmission pathway. These interactions and the tissue tropism in the vector body determine the efficiency and specificity of the transmission. This review describes the mechanisms involved in circulative begomovirus transmission by B. tabaci, focusing on the most studied virus in this regard, namely the tomato yellow leaf curl virus (TYLCV) and its closely related isolates. Additionally, the review aims at drawing attention to the recent knowhow of unorthodox virus-B. tabaci interactions. The recent knowledge of whitefly-mediated transmission of two recombinant poleroviruses (Luteoviridae), a virus group with an ssRNA genome and known to be strictly transmitted with aphids, is discussed with its broader context in the emergence of new whitefly-driven virus diseases.


Assuntos
Geminiviridae/genética , Hemípteros/virologia , Insetos Vetores/virologia , Vírus de Plantas/genética , Viroses/transmissão , Animais , Begomovirus/genética , Begomovirus/patogenicidade , Geminiviridae/patogenicidade , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade
7.
Viruses ; 13(9)2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34578401

RESUMO

Among the numerous biological constraints that hinder cassava (Manihot esculenta Crantz) production, foremost is cassava mosaic disease (CMD) caused by virus members of the family Geminiviridae, genus Begomovirus. The mechanisms of CMD tolerance and susceptibility are not fully understood; however, CMD susceptible T200 and tolerant TME3 cassava landraces have been shown to exhibit different large-scale transcriptional reprogramming in response to South African cassava mosaic virus (SACMV). Recent identification of 85 MeWRKY transcription factors in cassava demonstrated high orthology with those in Arabidopsis, however, little is known about their roles in virus responses in this non-model crop. Significant differences in MeWRKY expression and regulatory networks between the T200 and TME3 landraces were demonstrated. Overall, WRKY expression and associated hormone and enriched biological processes in both landraces reflect oxidative and other biotic stress responses to SACMV. Notably, MeWRKY11 and MeWRKY81 were uniquely up and downregulated at 12 and 67 days post infection (dpi) respectively in TME3, implicating a role in tolerance and symptom recovery. AtWRKY28 and AtWRKY40 homologs of MeWRKY81 and MeWRKY11, respectively, have been shown to be involved in regulation of jasmonic and salicylic acid signaling in Arabidopsis. AtWRKY28 is an interactor in the RPW8-NBS resistance (R) protein network and downregulation of its homolog MeWRKY81 at 67 dpi in TME3 suggests a negative role for this WRKY in SACMV tolerance. In contrast, in T200, nine MeWRKYs were differentially expressed from early (12 dpi), middle (32 dpi) to late (67 dpi) infection. MeWRKY27 (homolog AtWRKY33) and MeWRKY55 (homolog AtWRKY53) were uniquely up-regulated at 12, 32 and 67 dpi in T200. AtWRKY33 and AtWRKY53 are positive regulators of leaf senescence and oxidative stress in Arabidopsis, suggesting MeWRKY55 and 27 contribute to susceptibility in T200.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Manihot/genética , Manihot/virologia , Doenças das Plantas/virologia , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Begomovirus/patogenicidade , Resistência à Doença/genética , Suscetibilidade a Doenças , Senescência Vegetal
8.
Cells ; 10(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34359841

RESUMO

Seed transmission is an important factor in the epidemiology of plant pathogens. Geminiviruses are serious pests spread in tropical and subtropical regions. They are transmitted by hemipteran insects, but a few cases of transmission through seeds were recently reported. Here, we investigated the tomato seed transmissibility of the begomovirus tomato yellow leaf curl Sardinia virus (TYLCSV), one of the agents inducing the tomato yellow leaf curl disease, heavily affecting tomato crops in the Mediterranean area. None of the 180 seedlings originating from TYLCSV-infected plants showed any phenotypic alteration typical of virus infection. Moreover, whole viral genomic molecules could not be detected in their cotyledons and true leaves, neither by membrane hybridization nor by rolling-circle amplification followed by PCR, indicating that TYLCSV is not a seed-transmissible pathogen for tomato. Examining the localization of TYLCSV DNA in progenitor plants, we detected the virus genome by PCR in all vegetative and reproductive tissues, but viral genomic and replicative forms were found only in leaves, flowers and fruit flesh, not in seeds and embryos. Closer investigations allowed us to discover for the first time that these embryos were superficially contaminated by TYLCSV DNA but whole genomic molecules were not detectable. Therefore, the inability of TYLCSV genomic molecules to colonize tomato embryos during infection justifies the lack of seed transmissibility observed in this host.


Assuntos
Begomovirus/genética , DNA Viral/genética , Flores/virologia , Frutas/virologia , Genoma Viral , Folhas de Planta/virologia , Solanum lycopersicum/virologia , Begomovirus/metabolismo , Begomovirus/patogenicidade , DNA Viral/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/virologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
9.
J Virol ; 95(21): e0043221, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34406866

RESUMO

Cassava mosaic disease (CMD), which is caused by single-stranded DNA begomoviruses, severely limits cassava production across Africa. A previous study showed that CMD symptom severity and viral DNA accumulation increase in cassava in the presence of a DNA sequence designated SEGS-2 (sequence enhancing geminivirus symptoms). We report here that when SEGS-2 is coinoculated with African cassava mosaic virus (ACMV) onto Arabidopsis thaliana, viral symptoms increase. Transgenic Arabidopsis with an integrated copy of SEGS-2 inoculated with ACMV also display increased symptom severity and viral DNA levels. Moreover, SEGS-2 enables Cabbage leaf curl virus (CaLCuV) to infect a geminivirus-resistant Arabidopsis thaliana accession. Although SEGS-2 is related to cassava genomic sequences, an earlier study showed that it occurs as episomes and is packaged into virions in CMD-infected cassava and viruliferous whiteflies. We identified SEGS-2 episomes in SEGS-2 transgenic Arabidopsis. The episomes occur as both double-stranded and single-stranded DNA, with the single-stranded form packaged into virions. In addition, SEGS-2 episomes replicate in tobacco protoplasts in the presence, but not the absence, of ACMV DNA-A. SEGS-2 episomes contain a SEGS-2 derived promoter and an open reading frame with the potential to encode a 75-amino acid protein. An ATG mutation at the beginning of the SEGS-2 coding region does not enhance ACMV infection in A. thaliana. Together, the results established that SEGS-2 is a new type of begomovirus satellite that enhances viral disease through the action of an SEGS-2-encoded protein that may also be encoded by the cassava genome. IMPORTANCE Cassava is an important root crop in the developing world and a food and income crop for more than 300 million African farmers. Cassava is rising in global importance and trade as the demands for biofuels and commercial starch increase. More than half of the world's cassava is produced in Africa, where it is primarily grown by smallholder farmers, many of whom are from the poorest villages. Although cassava can grow under high temperature, drought, and poor soil conditions, its production is severely limited by viral diseases. Cassava mosaic disease (CMD) is one of the most important viral diseases of cassava and can cause up to 100% yield losses. We provide evidence that SEGS-2, which was originally isolated from cassava crops displaying severe and atypical CMD symptoms in Tanzanian fields, is a novel begomovirus satellite that can compromise the development of durable CMD resistance.


Assuntos
Begomovirus/genética , Begomovirus/isolamento & purificação , Manihot/virologia , Doenças das Plantas/virologia , Vírus Satélites/genética , Vírus Satélites/isolamento & purificação , Begomovirus/classificação , Begomovirus/patogenicidade , DNA Viral/genética , Genoma Viral , Mutação , Filogenia , Recombinação Genética , Vírus Satélites/classificação , Vírus Satélites/patogenicidade , Nicotiana/virologia
10.
Nat Commun ; 12(1): 4278, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34257307

RESUMO

Geminiviruses are plant viruses with limited coding capacity. Geminivirus-encoded proteins are traditionally identified by applying a 10-kDa arbitrary threshold; however, it is increasingly clear that small proteins play relevant roles in biological systems, which calls for the reconsideration of this criterion. Here, we show that geminiviral genomes contain additional ORFs. Using tomato yellow leaf curl virus, we demonstrate that some of these small ORFs are expressed during the infection, and that the encoded proteins display specific subcellular localizations. We prove that the largest of these additional ORFs, which we name V3, is required for full viral infection, and that the V3 protein localizes in the Golgi apparatus and functions as an RNA silencing suppressor. These results imply that the repertoire of geminiviral proteins can be expanded, and that getting a comprehensive overview of the molecular plant-geminivirus interactions will require the detailed study of small ORFs so far neglected.


Assuntos
Begomovirus/patogenicidade , Geminiviridae/genética , Geminiviridae/patogenicidade , Genoma Viral/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Fases de Leitura Aberta/genética , Doenças das Plantas/virologia , Interferência de RNA/fisiologia , Nicotiana/ultraestrutura , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência
11.
J Virol ; 95(17): e0054121, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34106000

RESUMO

Begomoviruses (family Geminiviridae, genus Begomovirus) significantly hamper crop production and threaten food security around the world. The frequent emergence of new begomovirus genotypes is facilitated by high mutation frequencies and the propensity to recombine and reassort. Homologous recombination has been especially implicated in the emergence of novel cassava mosaic begomovirus (CMB) genotypes, which cause cassava mosaic disease (CMD). Cassava (Manihot esculenta) is a staple food crop throughout Africa and an important industrial crop in Asia, two continents where production is severely constrained by CMD. The CMD species complex is comprised of 11 bipartite begomovirus species with ample distribution throughout Africa and the Indian subcontinent. While recombination is regarded as a frequent occurrence for CMBs, a revised, systematic assessment of recombination and its impact on CMB phylogeny is currently lacking. We assembled data sets of all publicly available, full-length DNA-A (n = 880) and DNA-B (n = 369) nucleotide sequences from the 11 recognized CMB species. Phylogenetic networks and complementary recombination detection methods revealed extensive recombination among the CMB sequences. Six out of the 11 species descended from unique interspecies recombination events. Estimates of recombination and mutation rates revealed that all species experience mutation more frequently than recombination, but measures of population divergence indicate that recombination is largely responsible for the genetic differences between species. Our results support that recombination has significantly impacted the CMB phylogeny and has driven speciation in the CMD species complex. IMPORTANCE Cassava mosaic disease (CMD) is a significant threat to cassava production throughout Africa and Asia. CMD is caused by a complex comprised of 11 recognized virus species exhibiting accelerated rates of evolution, driven by high frequencies of mutation and genetic exchange. Here, we present a systematic analysis of the contribution of genetic exchange to cassava mosaic virus species-level diversity. Most of these species emerged as a result of genetic exchange. This is the first study to report the significant impact of genetic exchange on speciation in a group of viruses.


Assuntos
Begomovirus/isolamento & purificação , Begomovirus/patogenicidade , Variação Genética , Manihot/virologia , Mutação , Doenças das Plantas/virologia , Recombinação Genética , África , Ásia , Begomovirus/classificação , Begomovirus/genética , Evolução Molecular , Genoma Viral , Filogenia
12.
Food Chem ; 359: 129939, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33957333

RESUMO

Tomato leaf curl New Delhi virus-potato (ToLCNDV-potato) causes potato apical leaf curl disease which severely affects nutritional parameters such as carbohydrate, protein, and starch biosynthesis thereby altering glycemic index (GI) and resistant starch (RS) of potato. ToLCNDV-potato virus was inoculated on potato cultivars (Kufri Pukhraj [susceptible]; Kufri Bahar [resistant]) and various quality parameters of potato tuber were studied. There was a significant (P < 0.01) reduction in starch, amylose and resistant starch contents in the infected tubers. However, carbohydrate and amylopectin increased significantly (P < 0.01) which contributes to increased starch digestibility reflected with high GI and glycemic load values. Besides, ToLCNDV-potato infection leads to a significant increase in reducing sugar, sucrose, amino acid and protein in potato tubers. This is a first-ever study that highlights the impact of biotic stress on GI, RS and nutritional quality parameters of potato which is a matter of concern for consumers.


Assuntos
Begomovirus/patogenicidade , Índice Glicêmico , Tubérculos/metabolismo , Amido Resistente/metabolismo , Solanum tuberosum/metabolismo , Metabolismo dos Carboidratos , Solanum tuberosum/virologia , Estresse Fisiológico
13.
Arch Virol ; 166(5): 1409-1414, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33646405

RESUMO

Common bean plants (Phaseolus vulgaris L.) showing different virus-like symptoms were collected in northwestern Argentina. Dot-blot hybridization tests showed that the begomoviruses bean golden mosaic virus and tomato yellow vein streak virus were the most prevalent, but they also revealed the presence of unknown begomoviruses. The complete genome sequence of one of these unknown begomoviruses was determined. Sequence analysis showed that the virus is a typical New World begomovirus, for which the name "bean bushy stunt virus" (BBSV) is proposed. Biological assays based on biolistic inoculations showed that BBSV induced leaf roll and stunting symptoms similar to those observed in the field-collected common bean sample.


Assuntos
Begomovirus/fisiologia , Phaseolus/virologia , Doenças das Plantas/virologia , Argentina , Sequência de Bases , Begomovirus/classificação , Begomovirus/genética , Begomovirus/patogenicidade , DNA Viral/genética , Genoma Viral/genética , Especificidade de Hospedeiro , Fases de Leitura Aberta , Phaseolus/crescimento & desenvolvimento , Filogenia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/virologia , Glycine max/crescimento & desenvolvimento , Glycine max/virologia
14.
Mol Biol Rep ; 48(2): 1383-1391, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33599950

RESUMO

Yellow vein mosaic disease is the major biotic constraint of okra cultivation in Sri Lanka. Identification and detailed molecular characterization of associated pathogen is needed for effective disease management. The genome of the begomovirus and betasatellite were amplified in symptomatic plant samples using specific degenerate primers. DNA-A genome of twelve isolates representing different locations in Sri Lanka were cloned, sequenced and deposited in GenBank database (Accession No- KX698087- KX698092 and MH455207- MH455212). Size of the complete nucleotide sequences ranged from 2735 to 2786 bp. The genome organization showed characteristics of begomoviruses. The pairwise sequence identity revealed the association of two different begomovirus species. Five of the isolates showed > 91% of sequences identity with Bhendi yellow vein mosaic virus, and the rest of the seven isolates were around 92% of identity with Okra enation leaf curl virus. This is further supported by phylogenetic analysis where both of these group of isolates were in different cluster. Recombination analysis showed the presence of recombinant fragments in the virus isolates associated with okra yellow vein mosaic disease (OYVMD) in Sri Lanka. Attempts to amplify DNA- B were failed in any of the samples tested. However, both type of the begomovirus species associated with betasatellite species, Bhendi yellow vein mosaic betasatellite. The present study has revealed the association of two distinct monopartite begomovirus species, Bhendi yellow vein mosaic virus or Okra enation leaf curl virus, with OYVMD in Sri Lanka.


Assuntos
Abelmoschus/virologia , Begomovirus/genética , Doenças das Plantas/virologia , Abelmoschus/genética , Begomovirus/isolamento & purificação , Begomovirus/patogenicidade , Análise por Conglomerados , DNA Viral/genética , DNA Viral/isolamento & purificação , Variação Genética/genética , Genoma Viral/genética , Filogenia , Doenças das Plantas/genética , Análise de Sequência de DNA , Software
15.
Sci Rep ; 11(1): 890, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441589

RESUMO

The leaf curl disease of Jatropha caused by geminiviruses results in heavy economic losses. In the present study, we report the identification of a new strain of a Jatropha leaf curl Gujarat virus (JLCuGV), which encodes six ORFs with each one having RNA silencing suppressor activity. Therefore, three artificial microRNAs (amiRNAs; C1/C4, C2/C3 and V1/V2) were designed employing overlapping regions, each targeting two ORFs of JLCuGV genomic DNA and transformed in tobacco. The C1/C4 and C2/C3 amiRNA transgenics were resistant while V1/V2 amiRNA transgenics were tolerant against JLCuGV. The relative level of amiRNA inversely related to viral load indicating a correlation with disease resistance. The assessment of photosynthetic parameters suggests that the transgenics perform significantly better in response to JLCuGV infiltration as compared to wild type (WT). The metabolite contents were not altered remarkably in amiRNA transgenics, but sugar metabolism and tricarboxylic acid (TCA) cycle showed noticeable changes in WT on virus infiltration. The overall higher methylation and demethylation observed in amiRNA transgenics correlated with decreased JLCuGV accumulation. This study demonstrates that amiRNA transgenics showed enhanced resistance to JLCuGV while efficiently maintaining normalcy in their photosynthesis and metabolic pathways as well as homeostasis in the methylation patterns.


Assuntos
Begomovirus/genética , Resistência à Doença/genética , Nicotiana/genética , Begomovirus/patogenicidade , Geminiviridae/genética , Geminiviridae/patogenicidade , Jatropha/genética , MicroRNAs/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/genética , Interferência de RNA/fisiologia , RNA Viral/genética , Carga Viral
16.
Sci Rep ; 11(1): 1010, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441749

RESUMO

Leaf curl, a whitefly-borne begomovirus disease, is the cause of frequent epidemic in chili. In the present study, transmission parameters involved in tripartite interaction are estimated to simulate disease dynamics in a population dynamics model framework. Epidemic is characterized by a rapid conversion rate of healthy host population into infectious type. Infection rate as basic reproduction number, R0 = 13.54, has indicated a high rate of virus transmission. Equilibrium population of infectious host and viruliferous vector are observed to be sensitive to the immigration parameter. A small increase in immigration rate of viruliferous vector increased the population of both infectious host and viruliferous vector. Migrant viruliferous vectors, acquisition, and transmission rates as major parameters in the model indicate leaf curl epidemic is predominantly a vector -mediated process. Based on underlying principles of temperature influence on vector population abundance and transmission parameters, spatio-temporal pattern of disease risk predicted is noted to correspond with leaf curl distribution pattern in India. Temperature in the range of 15-35 °C plays an important role in epidemic as both vector population and virus transmission are influenced by temperature. Assessment of leaf curl dynamics would be a useful guide to crop planning and evolution of efficient management strategies.


Assuntos
Begomovirus/patogenicidade , Capsicum/virologia , Doenças das Plantas/virologia , Animais , Simulação por Computador , Produtos Agrícolas/virologia , Hemípteros/virologia , Interações entre Hospedeiro e Microrganismos , Índia , Insetos Vetores/virologia , Modelos Biológicos , Doenças das Plantas/prevenção & controle , Folhas de Planta/virologia , Análise Espaço-Temporal , Temperatura
17.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477652

RESUMO

V2 proteins encoded by some whitefly-transmitted geminiviruses were reported to be functionally important proteins. However, the functions of the V2 protein of tobacco curly shoot virus (TbCSV), a monopartite begomovirus that causes leaf curl disease on tomato and tobacco in China, remains to be characterized. In our report, an Agrobacterium infiltration-mediated transient expression assay indicated that TbCSV V2 can suppress local and systemic RNA silencing and the deletion analyses demonstrated that the amino acid region 1-92 of V2, including the five predicted α-helices, are required for local RNA silencing suppression. Site-directed substitutions showed that the conserved basic and ring-structured amino acids in TbCSV V2 are critical for its suppressor activity. Potato virus X-mediated heteroexpression of TbCSV V2 in Nicotiana benthamiana induced hypersensitive response-like (HR-like) cell death and systemic necrosis in a manner independent of V2's suppressor activity. Furthermore, TbCSV infectious clone mutant with untranslated V2 protein (TbCSV∆V2) could not induce visual symptoms, and coinfection with betasatellite (TbCSB) could obviously elevate the viral accumulation and symptom development. Interestingly, symptom recovery occurred at 15 days postinoculation (dpi) and onward in TbCSV∆V2/TbCSB-inoculated plants. The presented work contributes to understanding the RNA silencing suppression activity of TbCSV V2 and extends our knowledge of the multifunctional role of begomovirus-encoded V2 proteins during viral infections.


Assuntos
Begomovirus/genética , Nicotiana/virologia , Potexvirus/genética , Proteínas Virais/genética , Begomovirus/patogenicidade , China , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/virologia , Doenças das Plantas/genética , Doenças das Plantas/virologia , Potexvirus/patogenicidade , Interferência de RNA , Nicotiana/crescimento & desenvolvimento , Virulência/genética
18.
Virus Res ; 291: 198192, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33058965

RESUMO

Geminiviruses cause devastating diseases in solanaceous crops, with the bipartite begomoviruses tomato yellow leaf curl Kanchanaburi virus (TYLCKaV) and pepper yellow leaf curl Thailand virus (PYLCThV) major threats in Southeast Asia. To determine the molecular mechanism of geminivirus infection, we constructed infectious clones of TYLCKaV and PYLCThV. Both constructs infected Nicotiana benthamiana, but only TYLCKaV could infect Solanum lycopersicum 'A39'. A genome-swapping of TYLCKaV with PYLCThV revealed the TYLCKaV-B genome segment as the determinant of TYLCKaV infectivity in tomato. We constructed five geminivirus clones with chimeric TYLCKaV-B and PYLCThV-B genome segments to narrow down the region determining TYLCKaV infectivity in tomato. Only chimeric clones carrying the TYLCKaV intergenic region (IR) showed infectivity in S. lycopersicum 'A39', indicating that the IR of TYLCKaV-B is essential for TYLCKaV infectivity in tomato. Our results provide a foundation for elucidating the molecular mechanism of geminivirus infection in plants.


Assuntos
Begomovirus/genética , Doenças das Plantas/virologia , Folhas de Planta/virologia , Solanum lycopersicum/virologia , Begomovirus/patogenicidade , Clonagem Molecular , DNA Intergênico/genética , DNA Viral/genética , Genoma Viral , Filogenia , Nicotiana/virologia , Fatores de Virulência/genética
19.
Mol Biol Rep ; 48(1): 227-240, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33301051

RESUMO

African cassava mosaic virus (ACMV) and East African cassava mosaic virus (EACMV) are among the major constraints to cassava productivity within tropical and sub-tropical regions, including Ebonyi State, Nigeria. Thus, virus indexing has become imperative to determine the status of cassava mosaic disease (CMD) in Ebonyi State, to implement appropriate preventive and control strategies. Seventy-eight cassava accessions obtained from different locations of Ebonyi State were phenotypically scored, using scales 1-5 depending on CMD symptomatic expressions, followed by multiplex-PCR and sequencing for validation. 11% of cassava accessions cultivated in Afikpo were resistant (RE) to ACMV compared to 8% of moderately-resistant (MR) accessions in Izzi and 55% of tolerant (TO) ACMV accessions in Ebonyi. 100% of cassava accessions in Onicha and 66% in Afikpo South were susceptible (SU) and highly susceptible (HS) to ACMV, respectively. With multiplex-PCR, 97.4% (ACMV) and 2.6% (EACMV) were positive. Dunn's multiple comparison tests of CMD mean incidence demonstrated differences (P < 0.05), except between RE and MR, and TO and MR. More transitions (A/G, C/T) compared to transversions (A/T, G/T), were detected, with nonsynonymous mutations (Leucine/Isoleucine; Valine/Isoleucine; Arginine/Lysine; Methionine/Isoleucine), and good bit-scores (91.13-99.07% identites; e-values of 7.00e-148-0.00e+00). Phylogeny resolved the sequences into five major groups. DNA sequencing validated the detected ACMV and EACMV species. This study revealed variants of ACMV and low adoption of RE and MR cassava accessions in the farmers' fields. The findings will guide in getting disease-free and resistant varieties as planting materials to significantly mitigate the CMD spread in Ebonyi State, Nigeria.


Assuntos
Begomovirus/patogenicidade , Manihot/virologia , Filogenia , Doenças das Plantas/virologia , Begomovirus/genética , DNA Viral/genética , Manihot/crescimento & desenvolvimento , Nigéria , Doenças das Plantas/genética , Análise de Sequência de DNA , Nicotiana/crescimento & desenvolvimento , Nicotiana/virologia
20.
Sci Rep ; 10(1): 22277, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335295

RESUMO

A non-transgenic approach based on RNA interference was employed to induce protection against tomato mosaic virus (ToMV) infection in tomato plants. dsRNA molecules targeting the cp gene of ToMV were topically applied on plants prior to virus inoculation. Protection was dose-dependent and sequence-specific. While no protection was achieved when 0-16 µg dsRNA were used, maximum rates of resistance (60 and 63%) were observed in doses of 200 and 400 µg/plant, respectively. Similar rates were also obtained against potato virus Y when targeting its cp gene. The protection was quickly activated upon dsRNA application and lasted for up to 4 days. In contrast, no detectable antiviral response was triggered by the dsRNA from a begomovirus genome, suggesting the method is not effective against phloem-limited DNA viruses. Deep sequencing was performed to analyze the biogenesis of siRNA populations. Although long-dsRNA remained in the treated leaves for at least 10 days, its systemic movement was not observed. Conversely, dsRNA-derived siRNA populations (mainly 21- and 22-nt) were detected in non-treated leaves, which indicates endogenous processing and transport through the plant. Altogether, this study provides critical information for the development of novel tools against plant viruses; strengths and limitations inherent to the systems are discussed.


Assuntos
Vírus do Mosaico/genética , Doenças das Plantas/genética , Solanum lycopersicum/genética , Viroses/genética , Begomovirus/genética , Begomovirus/patogenicidade , Solanum lycopersicum/virologia , Vírus do Mosaico/patogenicidade , Doenças das Plantas/virologia , Potyvirus/genética , Potyvirus/patogenicidade , RNA de Cadeia Dupla/genética , RNA Interferente Pequeno , Nicotiana/genética , Nicotiana/virologia , Tobamovirus/genética , Viroses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA